INTRODUCTION
Jefferson Lab is engaged in a major upgrade project to double the CEBAF Accelerator's energy to 12 GeV/c and add major new experimental facilities. JLAB's Hall C is building an 11 GeV/C Superconducting Spectrometer to enable Nuclear Physics experiments at the highest available beam energy. The SHMS is a Superconducting focusing spectrometer with a magnetic arrangement of DQQQD. The first magnet, a small dipole, is called the Horizontal Bend (HB) and it permits the SHMS to reach 5.5 degree scattering angles. The three focusing quads are a cold iron quad (Q1) and a pair of SC cosine quads (Q2Q3). A 60 cm warm bore Dipole is required for momentum analysis. Q2Q3 quadrupoles and Dipole are under construction at Sigmaphi in France.

DIPOLE SHMS PARAMETERS
- Quantity 1
- 24 tons
- Warm bore 600mm
- 4.25 Tesla
- 3500 A
- Superconducting NbTi
- Liquid helium bath

Quadrupoles Q2&Q3 PARAMETERS
- Quantity 2
- 15 tons
- Warm bore 600mm
- Gradient 16 T/m - 4250 A
- Superconducting NbTi
- Liquid helium bath

CONDUCTOR CONSOLIDATION
Conductor mechanical strength improved from 50 Mpa (20°C) to 100 Mpa (at 20°C) by mechanical hardening
Special pressing machine designed and built to process 22 km of conductor
On line thickness control, cleaning and photography
Mechanical testing at room temperature, 77K and 4K to validate the process.

COILS MANUFACTURING
- Winding
- Vacuum impregnation
- Assembly and bonding
- Machining
- Collaring

VESSELS AND CRYOSTATS MANUFACTURING
- Helium vessel welding
- Nitrogen screen welding
- Vacuum outer vessel welding

CONCLUSION
Dipole and Q2Q3 manufacturing have progressed a lot in 2014 and 2015. Coils are now completed and cryostats assembly is in progress for a shipping to JLAB expected late 2015.